Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations
نویسنده
چکیده
Uncertainty quanti cation appears today as a crucial point in numerous branches of science and engineering. In the last two decades, a growing interest has been devoted to a new family of methods, called spectral stochastic methods, for the propagation of uncertainties through physical models governed by stochastic partial di erential equations. These approaches rely on a fruitful marriage of probability theory and approximation theory in functional analysis. This paper provide a review of some recent developments in computational stochastic methods, with a particular emphasis on spectral stochastic approaches. After a review of di erent choices for the functional representation of random variables, we provide an overview of various numerical methods for the computation of these functional representations: projection, collocation, Galerkin approaches... A detailed presentation of Galerkin-type spectral stochastic approaches and related computational issues is provided. Recent developments on model reduction techniques in the context of spectral stochastic methods are also discussed. The aim of these techniques is to circumvent several drawbacks of spectral stochastic approaches (computing time, memory requirements, intrusive character) and to allow their use for large scale applications. We particularly focus on model reduction techniques based on spectral decomposition techniques and their generalizations.
منابع مشابه
Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملNumerical solution of nonlinear SPDEs using a multi-scale method
In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets. The method combines implicit collocation with the multi-scale method. Using the multi-scale method, SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain. The stability and c...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل